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Evidence for chain shrinkage in binary polymer blends: Light scattering experiments and theory
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We report light-scattering experiments on the compatible binary polymer blend poly~ethylmethylsiloxane!
PEMS (N5223) and poly~dimethylsiloxane! PDMS (N5325) withfC,PEMS50.456 in the one phase region.
From thek dependence of the structure factor we obtain the effective segment lengthaeff

2 for temperatures
larger than the Ginzburg temperature, which shows a shrinkage if we approach the critical point in accordance
with theoretical predictions.@S1063-651X~97!03105-X#

PACS number~s!: 61.25.Hq, 05.20.2y, 05.70.Jk
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I. INTRODUCTION

Several years ago we predicted by using a mean fi
theory that individual chains in binary polymer blends sh
anomalous behavior@1–3#. When the phase separation is a
proached, it has been demonstrated that the individual ch
shrink significantly. Such an effect has been observed
Monte Carlo simulations of polymer mixtures by Sarib
and Binder@4#. At that time this behavior was not unde
standable. The random phase approximation~RPA! @5# sug-
gests in its simplest version that the chains size is, howe
not altered at all during all changes of temperature nor, he
also, when the critical point is approached. Moreover, in
original version of the RPA the radius of gyration is not ev
changed during the phase separation. This cannot be tru
the interactions experienced by an arbitrarily chosen in
vidual chain in the binary polymer blend depend sign
cantly on the density or composition fluctuations and th
correlation length, i.e., the thermal distance from the criti
point.

The chain size in dense interacting polymer systems s
as melts, blends, and copolymer melts is determined by
effective potential that acts on the chain under considerat
To calculate the effective potential in the simple mean fi
theory, we suggested starting from the entire partition fu
tion and computing the effective partition function for a
individual chain by integrating over all chains except on
This procedure yields an effective monomer-monomer
tential that contains all information on the other chains a
their thermodynamic behavior. Simple perturbation the
led to the conclusion that the individual chains shrink. The
effects have so far been seen directly only in Monte Ca
simulations, as mentioned above.

To our knowledge there are no experimental data
available, that support these statements measured at the
cal composition in the vicinity ofTC . The first method of
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choice one may think of is to use small-angle neutron sc
tering on partially labeled samples, but measurements h
not been analyzed in this respect up to now. In this paper
show that light scattering can indeed be used as an alte
tive to determine the effective chain size during temperat
changes, especially when the phase separation is approa
and large-scale fluctuations are present. It is indeed sh
experimentally below that the chains shrink as predic
even by the simple mean field model. Extensions of
theory to nonclassical effect yield good agreement with
light scattering experiments.

For realistic ‘‘melt’’ systems, however, mean field theo
is not sufficient close to the critical point, i.e., a certain r
gion near the Ginzburg temperature@6#, and more refined
methods have to be used. In the theoretical part of this pa
we use an ‘‘effective renormalization’’ that replaces t
Gaussian propagator of the mean field theory by the cor
correlation function at the critical point involving nonclass
cal exponents. This procedure yields interesting predicti
near the critical point and in the critical region that are co
bined with the mean field predictions outside the critical
gime. It is therefore tempting to postulate chain shrinki
above the Ginzburg temperature, where other effects hap
in the critical region.

The crucial step of understanding the physical behavio
tagged chains in mixtures can be seen by the follow
simple intuitive picture. Assume a partially miscible polym
A-B blend, say, in the one phase regime, i.e., where
correlation length is very small. The effective interaction e
perienced by anA chain is the average of all the interaction
present, i.e.,AA andAB interactions. When the correlatio
length is increased, e.g., by increasing the~Flory! interaction
parameter~or decreasing the temperature!, the blend starts to
phase separate on scales of the correlation length. Base
these ideas a corresponding droplet picture has been d
oped in the general theory of phase transitions@7#. Whenever
the correlation length is smaller than the average chain s
very interesting effects on individual chains can be expec
It is this regime when the chains start to shrink that t
effective interaction potential becomes smaller and sma
by local phase separation on the scale of the correla
length. We have used this idea to postulate a ‘‘weak loc
5723 © 1997 The American Physical Society
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5724 55THEOBALD, SANS-PENNINCKX, MEIER, AND VILGIS
ization’’ of individual chains within that temperature regio
@8#. The natural size of the correlation length, and the dr
lets when that maximum effect is reached, compare to
size of the chain. Physically this means that whenever
correlation length is of the order of the individual chain si
the blend is already phase separated on the level of the ra
of gyration. The chains filling these spatial regions char
terized byj.RG now experience mainlyAA interactions,
and thus take their natural melt dimension. Below that te
perature~at larger correlation length! the process on the leve
of the chain size is then less important, and a macroph
separation takes place. It is natural to expect this tempera
given by j(T)}(x02xF)

21/25aN1/2 close to the Ginzburg
temperature of the mixture.

In this paper we present light scattering experime
which support these ideas. At first glimpse, neutron scat
ing seems to be the most appropriate method to study
However, as shown in the Appendix, we would have
choose anA-B mixture where only a small part of, say,A is
deuterated, which is then looked upon to determine the fo
factor. It turns out that for such a procedure~see the Appen-
dix!, for every temperature, a different, small, fraction
deuterated chains is needed. In this paper we use light s
tering instead, and a special way of data treatment is in
duced below.

The paper is organized as follows. In Sec. II A we remi
the reader of the simple mean field theory already derive
@1–3# for the sake of convenience. This theory is, howev
generalized to the critical regime with an effective renorm
ized ~critical! correlation function in Sec. II B. There ou
effective Gaussian model is used, but with the exact form
the critical correlation function. In Sec. III A, we formulat
the experimentally relevant quantities from the scatter
function, and compute the effective size of the chain n
criticality. In Sec. III B we provide a crossover analysis wi
respect to the mean field to Ising transition which is imp
tant to truly discriminate between these two opposing
gions. In Sec. IV we provide information on the sample a
other experimental details. We finally discuss results a
draw conclusions in Sec. V.

II. THEORETICAL RESULTS

A. Perturbation approach—a reminder

The behavior of single chains in a binary mixture of po
mers has been investigated recently in mean field theory.
repeat the main results for convenience. It is useful to c
sider the Edwards Hamiltonian@9# for the taggedA chain in
the blend in the form

bH5
3

2a2 E0
N

dsS ]RA~s!

]s D 2

1E
0

N

dsE
0

N

ds8bUeff„R
A~s!2RA~s8!…. ~2.1!

a2 is in the bare mean square length of the statistical Ku
segment,N the degree of polymerization of both speci
~symmetric blend!, andRA(s) the chain~contour! variable.
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The Fourier transform of the effective interaction potent
Ueff(k) has been shown to be of the following form@1–3# for
an incompressible blend

Ueff
AA~k!5

1

SA
0~k!

@1/SB
0~k!#22xF

@1/SA
0~k!#1@1/SB

0~k!#22xF
. ~2.2!

SA
0(k) andSB

0(k) are the wave-vector-dependent bare str
ture factors of speciesA and B, and xF the usual Flory-
Huggins interaction parameter.

From these already known results the radius of gyrat
of the tagged chain has been computed by perturba
theory. This procedure led to the general expression

^R2&5Na2S 11
12

p2a4 E0
`

dk
1

k2
Ueff~k! D , ~2.3!

where an ‘‘effective’’ segment lengthaeff
2 can be defined as

aeff
2 5a2S 11

12

p2a4 E0
`

dk
1

k2
Ueff~k! D . ~2.4!

The disadvantage of the above formulation is that it ho
only above the Ginzburg temperature when the mean fi
theory is expected to be valid. Nevertheless, Eq.~2.4! is later
on shown to be useful at certain temperatures, i.e., in spe
regimes of the Flory-Huggins interaction parameterxF . For
these latter reasons it is convenient to rewrite it by use of
temperature dependence of the FloryxF parameter, i.e.,xF
5(xA /T)1xB . In this notation, for the temperature depe
dence of the effective segment length, we find

aeff
2 5a

12~2TMF /T!

„12~TMF /T!…1/2
, ~2.5!

where the positive proportionality constanta will be deter-
mined below in Sec. IV. The mean-field critical temperatu
TMF is given by the identification

x05
2

N
[

xA

TMF
1xB[xF~TMF! ~2.6!

for symmetric blends.

B. Results beyond mean field

It is desirable to study the conformational behavior of t
tagged chains beyond the mean field theory. This is d
nitely not a simple task. The difficulty can be seen as f
lows: The mean field Hamiltonian for two tagged chains
teracting with themselves and the~critical! medium can be
written as follows@9,10#:



e-

br

nd

rm
u
ox
t t
d

fo

ed

e.

l
nt

s,
q.
an
-

the

n

on
l
d
by

ba-

on
int
the

the

il.

55 5725EVIDENCE FOR CHAIN SHRINKAGE IN BINARY . . .
H5
3

2l 2 E0
NS ]RA

]s D 2ds1 3

2l 2 E0
NS ]RB

]s D 2ds
1 i E

0

N

ds fA„RA~s!…1 i E
0

N

ds fB„RB~s!…

1 1
2(

k
rW kV

WW rW 2k2 i(
n

fW krW 2k1 ln )
k,s

d

3S fk
s2 (

a51

n E
0

N

exp„2 ik•Ra
s~s!…D ~2.7!

where thefW k5(fk
A ,fk

B) fields are auxiliary fields whose
correlation functions^fk

sf2k
t &5Ust(k) are the effective

monomer potentials, e.g., given in Eq.~2.2! in the Gaussian
approximation. The logarithmic term in Eq.~2.7! can be sys-
tematically expanded@10#. It is easy to show that~in the
Gaussian approximation! the effective potential between sp
ciesA andB is given by the general expression@3#

Ust~k!5^fk
sf2k

t &5$~SWW 01V21!21%st
21 . ~2.8!

The latter equation can be rewritten simply by matrix alge
as

Ust~k!5@SWW ~SWW 0
211VWW !VWW 21#st

215„V~S0
211V!21S0

21
…st .

~2.9!

Near criticality the Gaussian approximation is invalid, a
the higher-order terms of Eq.~2.7! have to be taken into
account. This procedure is not simple, as higher-order te
appear, but can be performed by renormalization gro
methods. For the purpose of this paper a simplified appr
mate approach is presented. To do this it is importan
realize that the Gaussian propagator of the density fiel
given by

^rW krW 2k&G5„SWW 0
21~k!1VWW …21. ~2.10!

It is therefore tempting to replace the Gaussian value
^rW •rW & by the exact onê rW krW 2k&[SW (k) @11#. This yields,
instead of Eq.~2.9!, the general expression for the tagg
chain potential matrix

UWW ~k!5VWW •SWW 21~k!SWW 0
21~k!, ~2.11!

which can be evaluated in the limit of incompressibility, i.

Vst5V1«st , V→`. The incompressible limit ofSWW (k) re-
places the mean field structure factor

S~k!5
1

2~x02xF!1 1
12a2k2

~2.12a!

by the critical structure factor

S~k!5
B

k22h . ~2.12b!

B in a critical amplitude, andh the corresponding critica
exponent of the correlation function near the critical poi
a

s
p
i-
o
is

r

,

.

As polymer blends fall into the Ising universality clas
h50.039 @7#. Note that the procedure of replacing E
~2.12a! by Eq. ~2.12b! corresponds to the use of rather th
the correctf4(x) theory for the polymer mixture, an effec
tive ~renormalized! Gaussian@11#, i.e.,

E ddx
a2

12
u¹ru21~x02xF!r2~x!1lr4~x!

→E r~x!ux2x8ud221hr~x8!ddxddx8. ~2.13!

This procedure yields effective potentials which contain
renormalized propagator, i.e., they are given by

UAA~k!5
B

SA
0~k!

@1/SB
0~k!#22xF

k22h . ~2.14!

The taggedA chain has therefore the effective Hamiltonia

H5
3

2l 2 E0
N

dsS ]RA

]s D 2

1 1
2 E

0

N

dsE
0

N

ds8 UAA„RA~s!2RA~s8!…, ~2.15!

whereUAA(r ) is the Fourier transform ofUAA(k).
It is now easy to show that the perturbation calculati

@see Eqs.~2.8! and~2.4!# can be carried out for the potentia
given by Eq.~2.14!. Obviously the integral has an infrare
and ultraviolet divergence. Both are here simply removed
a cutoff. The short range cutoff~large values of the wave
vector k! is assumed to be the Kuhn step lengtha of the
polymer; i.e.,kmax;1/a.

The long wavelength cutoffkmin is slightly more compli-
cated. If it is chosen to bekmin;1/(a2N) we consider scales
inside the considered polymer coil. The first order pertur
tion yields in this case

R25a2NH 11gS 12
2TMF
T D S 1

a32h2
1

N32hD1O~N25!J ,
~2.16!

whereg is a constant. Therefore the additional contributi
is not important and can be neglected: At the critical po
the chain is almost Gaussian. Moreover inside the coil
mean field theory Eqs.~2.3! and ~2.5! is recovered.

The other and more interesting possibility is to choose
cutoff to be of the order of the correlation length, i.e.,kmin
;j21 in order to investigate the statistics outside of the co
The leading contribution therefore is given by

R25a2NH 11ĝS 2TMFT
21D ~j2~32h!2a2~32h!!1O~j25!J ,

~2.17!

or, neglecting irrelevant details,

R25a2NH 11gS 2TMFT
21D uT2TCun~32h!J , ~2.18!
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whereTCÞTMF is the real critical temperature of the syste
We note that the additional contribution vanishes at the c
cal point TC . These results can easily be interpreted in
droplet picture, and we will return to this point in the discu
sion at the end of this paper in Sec. V.

III. DATA TREATMENT

Since it turns out to be important to discriminate truly t
various possible regions of thermal distance toTC , in Sec.
III A we will first present the necessary framework to extra
the effective segment lengtha from the experimentalS(k)
vs k curves. In Sec. III B the crossover analysis~between
Ising and mean fields! is presented, which is basicall
needed to separate the pure Ising zone from the entire s
data.

A. Determination of the effective segment lengtha

In the framework of the random phase approximation
static structure factor of an incompressible polymer blend
given by @12,13#

S~k!215S~k!n.i.
211V~k!, ~3.1!

whereS(k)n.i.5S0(k) is the noninteracting part of the struc
ture factor, andV(k) is the Fourier transform of the interac
tions. ForS(k)n.i. we write, according to de Gennes@5#, for a
binary blend,

S~k!n.i.
215@SA

0~k!#211@SB
0~k!#21, ~3.2!

with fA1fB51 are the volume fractions, andSA,B
0 (k) is

the unperturbed single chain form factors of the respec
polymers. In the Gaussian approximation, and further us
the Zimm expansion, we can write, thereby identifyi
V(k).22xF with xF being the Flory-Huggins interactio
parameter, forS(k)21,

S~k!215@fANA#211@fBNB#2122xF1
a2

18fAfB
k2,

~3.3!

with NA and NB being the number of statistical segments p
chain anda the statistical segment length that is taken to
equal for both species. From Eq.~3.3! the scattered intensity
in forward direction~k50! is immediately given as„S(k
50)[S(0)…

S~0!215@fANA#211@fBNB#2122xF . ~3.4!

Equation~3.3! then becomes

S~k!215S~0!211
a2

18fAfB
k2. ~3.5!

Equation~3.5! is our working equation to extracta from the
angular dependence of the scattered intensity. For the
version of the intensity intoS(k); see @14#. The segment
length a is related to the radius of gyrationRg

25 1
6Na

2 for
Gaussian coils.

x0 , the value ofxF at the spinodal, is given by Eq~2.6!;
hence from Eq.~3.5! we obtain
.
i-
a
-

t

of

e
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e
g
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S~k!2152„x02xF~T!…1O~k2!, ~3.6!

which can be rewritten fork50 into

S~0!5
1

2x0
S 12

x

x0
D 21

, ~3.7!

or equivalently, using the standard empiric formula for t
Flory-Huggins interaction parameterx5xF5(xA/T)1xB
for convenience.«5(T2TMF )/T is the reduced tempera
ture, and the zero wave vector structure factor is then writ
as

S~0!5
TMF
2xA

S T2TMF
T D 21

5const3«2g. ~3.8!

Equation~3.8! yields the mean-field exponentg51 for the
temperature variation of the susceptibility.

Furthermore, we may rewrite Eq.~3.5! into

S~k!215S~0!21~11j2k2!, ~3.9!

where we have defined the correlation lengthj of critical
fluctuations. Equation~3.9! leads to

j5S x0

xA
TMFD 1/2A2N a

6 S T2TMF
T D 21/2

5const3«2n,

~3.10!

where n51/2 is the mean field value for the temperatu
variation of the correlation length. Equation~3.9! has the
well known Ornstein-Zernike~OZ! form. Its Fourier trans-
form yields the space correlation functionG(r ) which de-
cays exponentially withr21 as

G~r !5
B

r d22 expS 2
r

j D , ~3.11!

with B being the amplitude andd the space dimension. It is
well known that close to the critical point the mean fie
theory fails due to its neglect of fluctuations, but a scali
and renormalization group analysis leads to the correct
finement of Eq.~3.11! via

G~r !5
B8

r d221h , ~3.12!

whereh is the universal critical exponent withh50.039 for
the three dimensional case (d53) @7#. This latter equation
corresponds to an expression for the structure factor, wh
can be presented by use of an unknown scaling func
g(kj),

S~k!215S~0!21g~kj!. ~3.13!

For the scaling functiong(kj) the analytical expression
given by Fisher and Burford@15# was used for values o
kj up to 4, by Tracy and McCoy@16#, who found that the
OZ approximation@Eq. ~3.9!# gives a good representation o
the data within the experimental accuracy. In the regime
«.Gi a straightforward determination ofa is simply accom-
plished by dividing Eq.~3.8! and the square of Eq.~3.10!. In
the fluctuation dominated regime; however~Ising-like!, the
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polymer topology is unimportant. Thus using the scaling
lation ~22h!n5g @7# with the Ising critical exponents
n50.63 andg51.24, from Eq.~3.13! together with Eq.~3.9!,
for the universal ratio of the critical amplitudes, we obtai

A5
j0
2

S0~0! S T2Tc
T D 2nh

, ~3.14!

where j0 and S0(0) are the amplitudes of the correlatio
length and susceptibility in the Ising regime, respective
Note that here now the Ising critical temperatureTC enters.
In the regime where Eq~3.14! is valid, TMF does not make
sense.

B. Crossover between the mean field and Ising regimes

Mean field theory on the one hand and three-dimensio
Ising behavior on the other hand are the two opposing l
iting cases in the behavior of the blends considered here.
proper criterion what separates these cases can be de
from the Ginzburg criterion~Ginzburg number Gi! @5–7#.
The Ginzburg-Wilson formulation of the free energyDG
that describes the second-order phase transition is give
@7#

DF

kT
5E d3r F 12! a0«c2~r !1

1

4!
u0c

4~r !1 1
2c0„¹c~r !…2G ,

~3.15!

with «512TMF /T being the reduced temperature and t
order parameterc(r )5r(r )2rc . The bare constantsa0 ,
u0 , andc05a0j0

2 were, i.e., specified by Hairet al. @18# for
the case of polymer blends. The general definition of
Ginzburg number Gi in the light of the above coefficients
@17#

Gi5
1

32p4

u0
2

a0
4j0

6NA
2 . ~3.16!

The Ginzburg criterion states that mean field theo
will be valid only at temperatures where«@«crossover, «*
5(T*2TC)/T is related to the crossover temperatureT* ,
which marks the deviation from the high-T mean field line in
aS21(0) vs 1/T plot; see, e.g., Ref.@25#. It can be in the one
phase region~disordered state! directly obtained from Eq.
~3.15! via the condition 1

4 u0^c
4&! 1

2a0«
2^c2&. Using a

crossover function which is an explicit solution to first ord
in the perturbation parameter«542d, based on a renormal
ization group analysis, Meieret al. @19# were able to com-
bine the two limiting cases, namely the mean field~«@Gi!
and the three-dimensional Ising regime~«!Gi! which takes
over close toTc . The crossover function reads@20#

«̂5@112333Ŝ~0!D/g#~g21!/D@Ŝ~0!21

1„112333Ŝ~0!D/g
…#2g/D ~3.17!

where«̂5«/Gi andŜ(0)5a0GiS(0). Thecritical exponents
are naturally those for the 3D Ising casesD50,51 and
g51.24. In the two limiting cases from Eq.~3.17!, «!Gi, the
Ising regime is recovered and, for«@Gi, the mean field re-
gime. Note, however, that Eq.~3.17! is valid only for
-
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e

y

S(k50! and not forS(k). From a fit of Eq.~3.17! to the
experimental data, the parametersa0 and Gi can be obtained
thus enabling us now to discriminate between mean field
Ising regimes with respect to the temperature difference fr
TC . Below we present data on the blend investigated in t
paper that will also show this behavior.

IV. EXPERIMENT

In this study we used a binary mixture of poly~ethylmeth-
ylsiloxane! PEMS (N5225) with poly~dimethylsiloxane!
PMDS (N5325). The polymers were synthesized by a
ionic ring opening polymerization of methylcyclotrisiloxan
and triethyl-trimethyl-cyclotrisiloxane yielding PDMS an
PEMS, respectively, by a procedure described elsewh
@22#. The typical polydispersityu of the samples, as obtaine
by GPC, wasu51.06. The critical volume fraction of PEMS
wasfC,PEMS50.465, in good agreement with the expec
tion fC,PEMS5NPDMS

1/2 /(NPDMS
1/2 1NPEMS

1/2 ). The critical ~Ising!
temperature amounts toTc5301.9060.01 K. The critical
temperature found here is in agreement with the data
sented previously@14#, thereby taking into account the ex
perimentally determinedT dependence ofx0 @22#. Light
scattering measurements were performed with a dust f
sealed sample in optical quality, which was obtained a
filtration through a 0.22mm Millipore filter into glass cylin-
ders of 1/29 outside diameter. The light source was an arg
ion laser ~Spectra Physics 2000! operating atl5488 nm.
Static and dynamic light scattering data was accomplis
by an ALV goniometer using an ALV 5000 correlator sy
tem ~ALV Langen, Germany!. The exact details of the ex
perimental conditions together with those parts of the res
which are not a matter of the purely conformational aspe
together with the analysis of the dynamic scattering funct
are published separately@23#.

V. RESULTS AND DISCUSSION

A. Discussion of the effectivea2 with respect to the Ising
and mean-field behaviors

Figure 1 displays the major result of the study: The d
pendence ofa2, the squared effective segment length o
tained from Eq.~3.5!, as a function of temperature. A stron
drop ofa2 with decreasing temperature can be seen. Firs
all, this figure can be divided into two parts with respect
temperature on the basis of the crossover function formal
@Eq. ~3.17!#. This gives a Ginzburg number (Gi56.88
31023, in agreement with Gi numbers published previous
@19,21#, which can be converted into temperature and
knowna0 according to Hairet al. @18# and Meieret al. @19#
The position ofTGinzburg is indicated by an arrow on the
temperature axis, and corresponds toT5304 K. Data points
below are naturally in the regime«!Gi and only the ratio of
critical amplitudes can be deduced as already outlined in
proceeding sections; thus Eq.~3.14! must be valid. The weak
divergence ofA is in very good agreement with the expect
value for hn50.024 and impliesh50.03860.002, thereby
usingn50.6260.01, which was obtained from an Eq.~3.10!-
type of analysis@23#.
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B. Fitting a model function to a2 for «>«Ginzburg

Having analyzed the data for«!Gi, we first apply the
perturbation solution to our data@1–3#. As outlined in the
theoretical reminder, Eq.~2.5! is the result for the tempera
ture dependence of the effective segment length in the fra
work of Refs.@1–3#. The proportionality constanta in Eq.
~2.5! is given by@24–26#

a5
36A2Vmon

pN2/3a3 Rg,0
2 . ~5.1!

We are able to calculate the proportionality constanta with
Vmon51.325310222 cm3 @14# and typically a51 nm ~see
Fig. 1! beinga50.13. A fit of Eq.~2.5! to the data for«.Gi
yields the curve which goes through the data points in t
indicated temperature range as is depicted in Fig. 1.
fitted parameters area50.2060.02 and the unperturbed se
ment lengtha0(Rg,0

2 5 1
6Na0

2) beinga051.5360.08 nm. This
value is higher than the one reported for PDMS by Ahar
@26# (a051.08 nm), values for PEMS are not known. How
ever, preliminary measurements by Momper@22# indicated
that values fora0 beyonda051.2 nm are possible. By fitting
Eq. ~2.5! to the data, also the mean field critical temperat
enters, with amounts to beTMF5302.2 K. This value was
obtained by plotting the reciprocal structure factor versus
inverse temperature and extrapolate it toS(0)2150 to find
TMF . This procedure is meaningful only for high molecul
weight blends like those here, as was outlined recently@21#.

In a recent paper, Vilgis and Meier@8# put forward a
variational treatment to predict a weak localization of chai
at temperatures when the correlation length is of the orde
the chain dimensions. This is supported by the droplet p
ture @7#, which is well established in the physics of critic
phenomena, where the localization is most pronounced w
the size of the chains is of the order of a critical droplet. T
corresponding value ofxF for that situation is given by@27#

FIG. 1. The square of the effective segment lengthaeff
2 obtained

via Eq.~3.5! as a function ofT. Indicated by arrows is the Ginzbur
temperature as obtained by a fit of the susceptibility data by
~3.17!, and the temperature where the effective potential@Eq. ~2.2!#
changes sign. The former one marks the crossover between
Ising and MF behavior, and the latter one is related to the rece
developed localization picture~Ref. @8#!. The full line is a fit of Eq.
~2.5! together with Eq.~5.1! on the basis of a perturbation approa
@1–3#. Clearly, this picture is only adequate for«@Gi; specifically
it fits only to Ueff50.
e-

t
e

i

e

e

,
of
-

en
e

xF5
1

N
, ~5.2!

which is precisely the value when the potential Eq.~2.2!
changes sign. In order to rationalize our result further
adopt the above picture and treat in Eq.~2.2! the bare struc-
ture factor through the Pade´ approximationSA

0(k)5SB
0(k)

5N/(11 1
12Na

2k2). For k50 ~valid for light scattering ex-
periments! from Eq. ~2.2! we then obtain, for the effective
potential for symmetric blends,

Ueff}
1

N

x022xF

2~x02xF!
. ~5.3!

This can be rearranged usingj22}2(x02xF) into

Ueff5N21~12x0j
2!, ~5.4!

which, in view of the above discussed droplet picture, for
position where the effective potential is zero, the conditi
provides

j25
N

2
, ~5.5!

yielding j.A3Rg5180 Å usinga051.53 nm. The tempera
ture wherej exceeds that given value in Fig. 1 is atT
5305.7 K, which is close to the value of the Ginzburg te
perture, a result that could be expected intuitively. We ha
indicated that temperatureT by Ueff50 in Fig. 1. However,
this further marks the limits of the simple perturbation theo
which is brought forward by Eq.~2.2!. Therefore we went a
step further and applied Eq.~2.18!, which is valid beyond the
mean field picture. We assume this treatment to be v
down to the minimum inaeff

2 ~Fig. 1! being located at a value
of aeff

2 '4 nm2, and which is given by roughly the position o
TGinzburg. As we had seen, for«!Gi, a completely different
physics, where the polymer topology is unimportant, com
into play. Hence, forT’s even lower, the pure Ising case is
perfect representation of our data~see@23#!. Rewriting Eq.
~2.18! into the following form gives

aeff
2 5amin

2 H I1CS 2TMFT
21D ~T2TC!n~32h!J . ~5.6!

If we useaeff
2 54 nm2, TMF5302.2 K,TC5301.9 K, andn~3

2h!51.814, we are able to obtain a~one parameter! fit to the
data which is indicated in Fig. 2. Thereby the value of t
constantC was found to beC50.05. Thus we conclude tha
from our study the following physical sensible pictu
emerges: The crossover from MF to Ising is given by t
Ginzburg temperture. This temperature differs from the cl
sical MF estimate for the width of the critical region as ou
lined by Joanny@28#, as has been shown by Refs.@19#, @21#
based on Ref.@20#. Our study adds another temperature th
is important on the level of tagged chains. ThisTu eff50 is
given by the value when the correlation lengthj(T) com-
pares with the values of the size of the polymer chains,
corresponds to the zero of the effective interaction poten
@Eq. ~2.2!#. It is natural that the latter temperature is ve
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close to the Ginzburg temperature. The last point is con
tent with our recent ‘‘localization model’’@8#.

In the past, peculiar scattering results from polym
blends @29# have been interpreted as being due to
k-dependentx parameter. In the framework of Khokhlov an
Erukhimovich’s treatment@30# this is likely related to glass
point effects when local structural phenomena such as dif
ence in stiffness, dynamics of side groups, etc., matter.
polymer blend under the present consideration may be c
sen as a model system where these effects are absent.
has been proven also in a recent study on the interdiffus
dynamics@31#.

Finally, we would comment on recent neutron results
Briber, Bauer, and Hammouda@32# on d-PS–PVME blends.
They report also chain shrinkage to a much lesser exten
mixtures which are off-critical in the concentrations an
even more important, not close toTC . Their data were ana
lyzed with the RPA, although the blend is very asymmet
and the application of the RPA is questionable@33#. How-
ever, the results reported there cannot be compared with
data nor with our theoretical predictions, since they are ta
in the wrong («,N) phase space. For a further quantitati
justification of this, see the Appendix. One may further arg
that the pure thermal expansion may also be an effect w
one has to take into account here. That is erroneous as
rotational isomeric state~RIS! model reflects only purely

FIG. 2. The same data as in Fig. 1. The full line is a fit of E
~5.6! to the data. In the picture of the effective renormalized cor
lation function, the chain dimensions remain finite atTC . Evi-
dently, this result describes the data around«*Gi with deviations
for «@Gi.
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configurational properties of isolated chains, and coupling
critical density fluctuations are not taken into account. Co
sequently, RIS effects can be neglected.
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APPENDIX: SINGLE CHAIN CONFORMATION
AND NEUTRON SCATTERING

The determination of the effective tagged chain conf
mation of a chain of speciesA can be obtained alternativel
by small-angle neutron scattering. To do this, a fraction
A chains is labeled. The static scattering intensity is th
given by

I ~q!5 f ~12 f !~aD2aH!2SA~q!

1~ f aD1~12 f !aH2b!2SAA~q!

1~ incoherent part!, ~A1!

whereaD andaH are the scattering lengths of deuterium a
hydrogen, respectively,b in the scattering length of theB
speciesSA~q! is the single chain structure factor of theA
chains, andSAA(q) the divergent collective structure facto
of the blend. Thus

SA„q…5fA(
i , j

^exp$ iq•~r i
A2r j

A!%&,

SAA~q!5(
ab
i , j

^exp$ iq•~r i
a2r i

b!%&.

The difficulty now is that the divergent partSAA(q) domi-
natesI (q) close to the phase transition, and it is difficult
extractSA~q!.

The only way to obtainSA(q) in a reliable way is to
choose

f aD1~12 f !aH2b50.

This condition is, in general, difficult to satisfy, and there a
direct measurements ofSA(q).
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