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Evidence for chain shrinkage in binary polymer blends: Light scattering experiments and theory
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We report light-scattering experiments on the compatible binary polymer blen@epofimethylsiloxang
PEMS N=223) and polydimethylsiloxang PDMS (N=325) with ¢c pems=0.456 in the one phase region.
From thek dependence of the structure factor we obtain the effective segment Iaﬁgtbr temperatures
larger than the Ginzburg temperature, which shows a shrinkage if we approach the critical point in accordance
with theoretical predictiond.S1063-651X%97)03105-X|

PACS numbegps): 61.25.Hq, 05.26-y, 05.70.Jk

I. INTRODUCTION choice one may think of is to use small-angle neutron scat-

tering on partially labeled samples, but measurements have

Several years ago we predicted by using a mean fiel@lot been analyzed in this respect up to now. In this paper we
theory that individual chains in binary polymer blends showShow that light scattering can indeed be used as an alterna-
anomalous behavidf.—3]. When the phase separation is ap- tive to determine the effective chain size during temperature

proached, it has been demonstrated that the individual chaiffd'a"9es: especially when the phase separation is approached
.and large-scale fluctuations are present. It is indeed shown

shrink S|gn|f|ca_ntly. .SUCh an effect has_ been observ_ed Ir?experimentally below that the chains shrink as predicted
Monte Carlo simulations of polymer mixtures by Sa”ba”even by the simple mean field model. Extensions of the

and Binder[4]. At that time this behavior was not under- theory to nonclassical effect yield good agreement with the
standable. The random phase approximatRRA) [5] sug-  |ight scattering experiments.

gests in its simplest version that the chains size is, however, For realistic “melt” systems, however, mean field theory
not altered at all during all changes of temperature nor, hencis not sufficient close to the critical point, i.e., a certain re-
also, when the critical point is approached. Moreover, in thegion near the Ginzburg temperature], and more refined
original version of the RPA the radius of gyration is not evenmethods have to be used. In the theoretical part of this paper
changed during the phase separation. This cannot be true, #§ use an “effective renormalization” that replaces the
the interactions experienced by an arbitrarily chosen indiG2ussian propagator of the mean field theory by the correct
vidual chain in the binary polymer blend depend Si(‘:miﬁ_correlatlon function at the critical point involving nonclassi-

cantly on the density or composition fluctuations and theircal exponents. This procedure yields interesting predictions

correlation length, i.e., the thermal distance from the critical?€2" the critical point and in the critical region that are com-
point. bined with the mean field predictions outside the critical re-

The chain size in dense interacting polvmer svstems Sucgime. It is therefore tempting to postulate chain shrinking
g poly y bove the Ginzburg temperature, where other effects happen

as melts, blends, and copolymer melts is determined by al the critical region

effective potential that acts on the chain under consideration. e crucial step of understanding the physical behavior of
To calculate the effective potential in the simple mean fieldagged chains in mixtures can be seen by the following
theory, we suggested starting from the entire partition funcgimple intuitive picture. Assume a partially miscible polymer
tion and computing the effective partition function for an o_-B plend, say, in the one phase regime, i.e., where the
individual chain by integrating over all chains except one.correlation length is very small. The effective interaction ex-
This procedure yields an effective monomer-monomer poperienced by a chain is the average of all the interactions
tential that contains all information on the other chains ancpresent, i.e.AA and AB interactions. When the correlation
their thermodynamic behavior. Simple perturbation thEOI’Mength is increased, e.g., by increasing tRry) interaction
led to the conclusion that the individual chains shrink. Thesgyarametefor decreasing the temperatyrthe blend starts to
effects have so far been seen directly only in Monte Carlghase separate on scales of the correlation length. Based on
simulations, as mentioned above. these ideas a corresponding droplet picture has been devel-
To our knowledge there are no experimental data yebped in the general theory of phase transitiofisWhenever
available, that support these statements measured at the crifire correlation length is smaller than the average chain size,
cal composition in the vicinity off . The first method of very interesting effects on individual chains can be expected.
It is this regime when the chains start to shrink that the
effective interaction potential becomes smaller and smaller
*Corresponding author. by local phase separation on the scale of the correlation
TElectronic address: VILGIS@MPIP-MAINZ.MPG.DE length. We have used this idea to postulate a “weak local-
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ization” of individual chains within that temperature region The Fourier transform of the effective interaction potential

[8]. The natural size of the correlation length, and the dropU4«(k) has been shown to be of the following fofi+3] for

lets when that maximum effect is reached, compare to than incompressible blend

size of the chain. Physically this means that whenever the

correlation length is of the order of the individual chain size 0

the blend is already phase separated on the level of the radius | an k)= 1 [1/Sg(k)]—2xF

of gyration. The chains filling these spatial regions charac- e ( LK) [1SY(K) T+ 1/SE(K) 1= 2x¢

terized by é=Rg now experience mainhAA interactions,

and thus take their natural melt dimension. Below that tem-

peraturg(at larger correlation lenggtihe process on the level Sg(k) and Sg(k) are the wave-vector-dependent bare struc-

of the chain size is then less important, and a macrophadere factors of species and B, and yr the usual Flory-

separation takes place. It is natural to expect this temperatutduggins interaction parameter.

given by &(T) < (xo— xr)  Y?=aN? close to the Ginzburg From these already known results the radius of gyration

temperature of the mixture. of the tagged chain has been computed by perturbation
In this paper we present light scattering experimentgheory. This procedure led to the general expression

which support these ideas. At first glimpse, neutron scatter-

ing seems to be the most appropriate method to study this.

However, as shown in the Appendix, we would have to (R?)=Na?

choose aA-B mixture where only a small part of, sak,is

deuterated, which is then looked upon to determine the form

factor. It turns out that for such a procedysee the Appen-

dix), for every temperature, a different, small, fraction of where an “effective” segment lengthZ; can be defined as

deuterated chains is needed. In this paper we use light scat-

tering instead, and a special way of data treatment is intro-

duced below. a2 —a2
The paper is organized as follows. In Sec. Il A we remind ef

the reader of the simple mean field theory already derived in

[1-3] for the sake of convenience. This theory is, however,_l_ ] o ]
generalized to the critical regime with an effective renormal-The disadvantage of the above formulation is that it holds

ized (critical) correlation function in Sec. Il B. There our Only above the Ginzburg temperature when the mean field
effective Gaussian model is used, but with the exact form ofh€ory is expected to be valid. Nevertheless, @cd) is later
the critical correlation function. In Sec. Il A, we formulate ©n Shown to be useful at certain temperatures, i.e., in special
the experimentally relevant quantities from the scatterind®dimes of the Flory-Huggins interaction paramegger. For
function, and compute the effective size of the chain neathese latter reasons it is convenient to rewrite it by_use of the
criticality. In Sec. Il B we provide a crossover analysis with temperature dependence of the Flaiy parameter, i.e.xr
respect to the mean field to Ising transition which is impor-=(xa/T)+ xg - In this notation, for the temperature depen-
tant to truly discriminate between these two opposing redence of the effective segment length, we find

gions. In Sec. IV we provide information on the sample and
other experimental details. We finally discuss results and
draw conclusions in Sec. V.

(2.2

12 ® 1
1+ W fo dkp Ueﬁ(k) , (2.3

12 (» 1
1+ 77_2a4 fo dkp Ueff(k) . (24)

12Tyl ,
Bl (= (T T 29

Il. THEORETICAL RESULTS where the positive proportionality constamtwill be deter-
A. Perturbation approach—a reminder mined below in Sec. IV. The mean-field critical temperature

. . L . . Tye is gi by the identificati
The behavior of single chains in a binary mixture of poly- ' MF ' 9'VeMn By he identiication

mers has been investigated recently in mean field theory. We

repeat the main results for convenience. It is useful to con- 2 Xxa
sider the Edwards Hamiltonig®] for the taggedA chain in Xo=N= Too TXB= XF(Tye) (2.9
the blend in the form MF
A 2
ﬂH=i fN J IR(s) for symmetric blends.
232 0 s

N N A A B. Results beyond mean field
+ | ds| ds'BURAs)—RAS)). (2.1) o . .
0 0 It is desirable to study the conformational behavior of the

tagged chains beyond the mean field theory. This is defi-

nitely not a simple task. The difficulty can be seen as fol-
a® is in the bare mean square length of the statistical Kuhiows: The mean field Hamiltonian for two tagged chains in-
segment,N the degree of polymerization of both speciesteracting with themselves and tleritical) medium can be
(symmetric blenyi and RA(s) the chain(contou) variable.  written as follows[9,10]:
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3 [N[dR,\? 3 [N[dRg\? As polymer blends fall into the Ising universality class,
H=WJ (g) d3+§zj (g) ds 7=0.039 [7]. Note that the procedure of replacing Eq.
0 0 (2.123 by Eq.(2.12h corresponds to the use of rather than

(N (N the correct¢?(x) theory for the polymer mixture, an effec-
+i fo ds ¢a(Ra(S))+i fo ds ¢s(Rg(s)) tive (renormalizedl Gaussiarf11], i.e.,
5 a?
+13 5V =i diptin]] 6 f d?x 35 [VoI?+ (o= xe)p?(¥) + X0 (%)
k n k,o

% —>fp(X)|X—X'|d_2+”p(X')dddeX'. (2.13

"N
-2 | exp(—ik'Rg<s)>) (2.

This procedure yields effective potentials which contain the

—(4A By i o )
where thed, = (¢, py) fields are auxiliary fields whose renormalized propagator, i.e., they are given by

correlation functions(¢g ¢” ,)=U"(k) are the effective

monomer potentials, e.g., given in BQ.2) in the Gaussian B [L1/S3(k)]—2xe
approximation. The logarithmic term in E(2.7) can be sys- Uaak)= = 7 . (2.19
tematically expanded10]. It is easy to show thafin the Sa(k)
Gaussian approximatigthe effective potential between spe- ) ) ) )
ciesA andB is given by the general expressifs The taggedA chain has therefore the effective Hamiltonian
. 30 10— 3 (N [dRx\?

UK =(dy Ty ={(S+V H 1.7 (28 H= 20 JO ds T;)
The latter equation can be rewritten simply by matrix algebra N \
s +5 [ as[ a5 UnRAS-Rus ), (219

0 0

U7(k) =[S(Sy  + VIV 1, = (V(S M+ V) 155 Y,
(2.9  whereUu(r) is the Fourier transform afJ pa(K).

It is now easy to show that the perturbation calculation
Near criticality the Gaussian approximation is invalid, and[see Eqgs(2.8) and(2.4)] can be carried out for the potential
the higher-order terms of Ed2.7) have to be taken into given by Eq.(2.14. Obviously the integral has an infrared
account. This procedure is not simple, as higher-order termgnd ultraviolet divergence. Both are here simply removed by
appear, but can be performed by renormalization groug cutoff. The short range cutoffarge values of the wave
methods. For the purpose of this paper a simplified approxiyector k) is assumed to be the Kuhn step lengthof the
mate approach is presented. To do this it is important tgolymer; i.e.,kya—1/a.

realize that the Gaussian propagator of the density field is The long wavelength cuto,, is slightly more compli-

given by cated. If it is chosen to ble,,~1/(a’N) we consider scales
5 2 inside the considered polymer coil. The first order perturba-
(Prp—1)e=(Sy (k) +V) 7. (2.10 tion yields in this case
It is therefore tempting to replace the Gaussian value for . 2Twe 1 s
(p-p) by the exact ondp.p_)=S(k) [11]. This yields, RP=a'Ny1+9| 1-—— || 5z=7~ Ns—n)JFO(N )

instead of EqQ.(2.9), the general expression for the tagged (2.16
chain potential matrix

- - R whereg is a constant. Therefore the additional contribution
U(k)zV-Sfl(k)Sgl(k), (2.1) is not important and can be neglected: At the critical point
the chain is almost Gaussian. Moreover inside the coil the
which can be evaluated in the limit of incompressibility, i.e., mean field theory Eqg2.3) and(2.5) is recovered.
The other and more interesting possibility is to choose the
cutoff to be of the order of the correlation length, iy,
~¢& Lin order to investigate the statistics outside of the coil.

V,,=V+eg,,, V—o. The incompressible limit o§(k) re-
places the mean field structure factor

1 The leading contribution therefore is given by
S(k)= (2.123
2(xo— x¢) +130°K? [ 2Twe
R?=a’N{1+§ —1)(g-<3—ﬂ>—a—<3—">)+0(§—5)},
by the critical structure factor T
(2.17
S(k)= W (2.12h  or, neglecting irrelevant details,
B in a critical amplitude, andy the corresponding critical 2_ .2 + 2TMF_ T v(3-7)
exponent of the correlation function near the critical point. RE=a'N)1+g T 1)IT-Tel » (218
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whereTc# Tyr is the real critical temperature of the system. S(k) " t=2(xo— xe(T))+O(K?), (3.6)

We note that the additional contribution vanishes at the criti-

cal point T¢. These results can easily be interpreted in awhich can be rewritten fok=0 into

droplet picture, and we will return to this point in the discus- L 1

sion at the end of this paper in Sec. V. S(0)= — (1_ i) ' 3.7)
2x0 Xo

ll. DATA TREATMENT . . .
or equivalently, using the standard empiric formula for the

Since it turns out to be important to discriminate truly the Flory-Huggins interaction parametey= = (xa/T)+ xs
various possible regions of thermal distanceTtg, in Sec.  for conveniencee=(T—Tyg)/T is the reduced tempera-
I A we will first present the necessary framework to extractture, and the zero wave vector structure factor is then written
the effective segment length from the experimentaB(k) as

vs k curves. In Sec. lll B the crossover analysizetween 4

Ising and mean fieldsis presented, which is basically S(0)= M T—Twe — const< e~ 7 (3.9
needed to separate the pure Ising zone from the entire set of 2x T ’ '
data.

Equation(3.8) yields the mean-field exponent=1 for the
temperature variation of the susceptibility.

A. Determination of the effective segment lengtta . .
g g Furthermore, we may rewrite E@3.5) into

In the framework of the random phase approximation the
static structure factor of an incompressible polymer blend is S(k) " 1=S(0) "Y1+ £%k?), (3.9
given by[12,13
where we have defined the correlation lendtlof critical

S(k)‘1=S(k)gf+V(k), (3.1) fluctuations. Equatiori3.9) leads to
whereS(k)n,i_=S°(k).is the noninteracting part of the struc- £e Xo Mm a(T-Tye ‘1’2: consi e
ture factor, and/(k) is the Fourier transform of the interac- MF 6 T
tions. ForS(k),; we write, according to de Genngs), for a (3.10

binary blend,
where v=1/2 is the mean field value for the temperature

S(k), =[SA(k)]*+[S3(k) ]2, (3.2 variation of the correlation length. EquatiqB.9) has the
well known Ornstein-Zernik€éOZ) form. Its Fourier trans-
with ¢+ ¢g=1 are the volume fractions, ar@ 5(k) is  form yields the space correlation functi@(r) which de-
the unperturbed single chain form factors of the respectivgays exponentially withi ~* as
polymers. In the Gaussian approximation, and further using
the Zimm expansion, we can write, thereby identifying B r
V(k)=—2xg with xg being the Flory-Huggins interaction G(r= rd=2 ex;{ B E) (3.1
parameter, foS(k) "1,
with B being the amplitude and the space dimension. It is
1 1 1 2 well known that close to the critical point the mean field
S(k) =L ¢aNal +[¢eNe] "= 2xe+ 75775 K, theory fails due to its neglect of fluctuations, but a scaling
(3.3 and renormalization group analysis leads to the correct re-

. _ o finement of Eq.(3.11) via
with N, and Ng being the number of statistical segments per

chain anda the statistical segment length that is taken to be

8.2

!

equal for both species. From E@®.3) the scattered intensity G(r)= rd=2+7" 312
in forward direction(k=0) is immediately given agS(k
=0)=95(0)) where 7 is the universal critical exponent with=0.039 for
. 1 1 the three dimensional case=3) [7]. This latter equation
S(0)""=[paNaAl "+ [heNe]l "—2xr. (34  corresponds to an expression for the structure factor, which
f k ling functi
Equation(3.3) then becomes S?Iilg)be presented by use of an unknown scaling function
gty X2 S(k) ~1=5(0) g(ke) (313
S(k)"t=35(0) "1+ k2. (3.5 g(ké). .
18pacs

For the scaling functiong(k¢) the analytical expression
Equation(3.5) is our working equation to extraet from the  given by Fisher and Burfordl15] was used for values of
angular dependence of the scattered intensity. For the coi up to 4, by Tracy and McCoy16], who found that the
version of the intensity int&S(k); see[14]. The segment OZ approximatiorfEq. (3.9)] gives a good representation of
length a is related to the radius of gyrr:ltiolﬁgz%,Na2 for  the data within the experimental accuracy. In the regime for
Gaussian coils. £>Gi a straightforward determination afis simply accom-

Xo. the value ofyg at the spinodal, is given by EQ.6); plished by dividing Eq(3.8) and the square of E¢3.10. In

hence from Eq(3.5 we obtain the fluctuation dominated regime; howewésing-like), the
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polymer topology is unimportant. Thus using the scaling re-S(k=0) and not forS(k). From a fit of Eq.(3.17) to the
lation (2—n)v=7 [7] with the Ising critical exponents experimental data, the parametagsand Gi can be obtained,
v=0.63 andy=1.24, from Eq(3.13 together with Eq(3.9),  thus enabling us now to discriminate between mean field and
for the universal ratio of the critical amplitudes, we obtain |sing regimes with respect to the temperature difference from

) T . Below we present data on the blend investigated in this

A= & (T_Tc (3.14  Paper that will also show this behavior.
S(0) | T ’ '

where &, and So(0) are the amplitudes of the correlation
length and susceptibility in the Ising regime, respectively.

—vy

IV. EXPERIMENT

Note that here now the Ising critical temperatdig enters. In this study we used a binary mixture of p@yhylmeth-
In the regime where E3.14) is valid, T),= does not make ylsiloxang PEMS (N=225) with polydimethylsiloxang
sense. PMDS (N=325). The polymers were synthesized by an-
ionic ring opening polymerization of methylcyclotrisiloxane
B. Crossover between the mean field and Ising regimes and triethyl-trimethyl-cyclotrisiloxane yielding PDMS and

PEMS, respectively, by a procedure described elsewhere

_Mean field theory on the one hand and three-dimensiongh5) The typical polydispersity of the samples, as obtained
Ising behavior on the other hand are the two opposing Ilmb GPC, wasi=1.06. The critical volume fraction of PEMS

iting cases in_ the behavior of the blends considered here. ThRas be peme=0.465, in good agreement with the expecta-
proper criterion what separates these cases can be denvg ' N 172 12 - ;
from the Ginzburg criterion(Ginzburg number Gi[5-7] N de,pems=Npowd (NpousT Npew). The critical (Ising)

. temperature amounts td.=301.90-0.01 K. The critical

The Glnzt_)urg-Wnson formulation of the freg_ene_zr@y_G temperature found here is in agreement with the data pre-
that describes the second-order phase transition is given bélented reviously14], thereby taking into account the ex-
[7] ed p I y g .
perimentally determined’ dependence ofy, [22]. Light
AF 1 1 scattering measurements were performed with a dust free,
ﬁ:f d3r 7 age Y2 (r)+ 7 u0¢4(r)+%co(V¢(r))z}, sealed sample in optical quality, which was obtained after
’ ' (3.15 filtration through a 0.22um Millipore filter into glass cylin-

' ders of 1/2 outside diameter. The light source was an argon
with =1—Tye/T being the reduced temperature and thelon laser(Spectra Physics 200@perating at\=488 nm.
order parametew)(r)=p(r)—p.. The bare constanta,,  Static and dynamic light scattering data was accomplished
Ug, andcy=ané2 were, i.e., specified by Haat al.[18] for by an ALV goniometer using an ALV 5000 correlator sys-
the case of polymer blends. The general definition of thd®M (ALV Langen, Germany The exact details of the ex-
Ginzburg number Gi in the light of the above coefficients isPerimental conditions together with those parts of the results

[17] which are not a matter of the purely conformational aspects

together with the analysis of the dynamic scattering function
1 u2 are published separatel23].
Gi=—=2 757 3.1
32m* agedNa (3.18

The Ginzburg criterion states that mean field theory V. RESULTS AND DISCUSSION

will be valid only at temperatures Whee> £ grossover & A. Discussion of the effectivea? with respect to the Ising

=(T*—T¢)/T is related to the crossover temperatdrg, and mean-field behaviors

which marks the deviation from the highmean field line in ) , ,
aS~1(0) vs 1/T plot; see, e.g., Ref25]. It can be in the one Figure 1 displays the major result of the study: The de-

5 !
phase regior(disordered stajedirectly obtained from Eq. f;ggg?f:mol? (;hs‘;" :gtga][sgcﬁgg%;\{[ee ns]egp;?d]rtele:%tt?ogb'
: e 1 i : .9), .

(3.19 via the .cond|t|.on;1. u0<w4><<-§fi°82<¢-2>' Us_lng a drop ofa? Witr?decreasin temperature cgn be seen Firstgof
crossover function which is an explicit solution to first order ¢'OP of& ng P : '

in the perturbation parameter=4—d, based on a renormal- all, this figure can be divided into two parts with respect to
ization group analysis, Meieet al. [1’9] were able to com- temperature on the basis of the crossover function formalism
bine the two limiting cases, namely the mean fiée>Gi) [Eq._(33._1n]_ This gives a Ginzburg number (&6.88

and the three-dimensional Ising regime<Gi) which takes X 10" °, in agreement with Gi numbers published previously

over close toT, . The crossover function reagi20] [19,21], which can be co_nverted into temperature and the
known a, according to Hairet al. [18] and Meieret al.[19]
§=[1+233:%(O)A/y](y—1)/A[AS(0)71 The position ofTGinzbu,g is indicated by an arrow on the
R temperature axis, and correspondsi'te 304 K. Data points
+(1+23335(0)4/7)] A (3.17  below are naturally in the regime<Gi and only the ratio of

R critical amplitudes can be deduced as already outlined in the
wheree =&/Gi andS(0)=a,GiS(0). Thecritical exponents proceeding sections; thus E&.14 must be valid. The weak
are naturally those for the 3D lIsing cas&s=0,51 and divergence ofA is in very good agreement with the expected
y=1.24. In the two limiting cases from E(.17), e<Gi, the  value for »»=0.024 and impliesp=0.038+0.002, thereby
Ising regime is recovered and, fe>Gi, the mean field re- usingy=0.62+0.01, which was obtained from an E§.10-
gime. Note, however, that Eq3.17 is valid only for type of analysi§23].
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—1 5.2
XF—N: (5.2

which is precisely the value when the potential Kg.2)
changes sign. In order to rationalize our result further we
adopt the above picture and treat in E2.2) the bare struc-
ture factor through the PadapproximationSg (k)= S3(k)
=N/(1+ &Na’k?). For k=0 (valid for light scattering ex-
periment$ from Eq. (2.2) we then obtain, for the effective
potential for symmetric blends,

302 304 306 308 310
Temperature [ K ] 1 Xxo—2xr

o — 22 AT
Ve N 20x0 xe)
FIG. 1. The square of the effective segment leraihobtained

via Eq.(3.5) as a function off. Indicated by arrows is the Ginzburg This can be rearranged usig2<2(xo— x¢) into

temperature as obtained by a fit of the susceptibility data by Eq.

(3.17), and the temperature where the effective potefEal (2.2)] Uer=N"1(1— x0&?), (5.4

changes sign. The former one marks the crossover between pure

Ising and MF behavior, and the latter one is related to the recentlwhich, in view of the above discussed droplet picture, for the

developed localization pictur@ef. [8]). The full line is a fit of Eq.  position where the effective potential is zero, the condition

(2.9 together with Eq(5.1) on the basis of a perturbation approach provides

[1-3]. Clearly, this picture is only adequate fe¥Gi; specifically

it fits only to U 4=0. N
2

(5.3

&=, (5.5

B. Fitting a model function to a2 for £> € Ginzburg

Having analyzed the data far<Gi, we first apply the yielding é= \/§Rg=180A usingag=1.53 nm. The tempera-
perturbation solution to our dafd—3]. As outlined in the ture where¢ exceeds that given value in Fig. 1 is &t
theoretical reminder, Eq2.5) is the result for the tempera- =305.7 K, which is close to the value of the Ginzburg tem-
ture dependence of the effective segment length in the framegserture, a result that could be expected intuitively. We have
work of Refs.[1-3]. The proportionality constant in Eq.  indicated that temperatur® by U.=0 in Fig. 1. However,
(2.5 is given by[24-2§ this further marks the limits of the simple perturbation theory
which is brought forward by Eq2.2). Therefore we went a
36V2Vion _, step further and applied E€R.18), which is valid beyond the

AT TINTRLR Ryo (5.9 mean field picture. We assume this treatment to be valid
down to the minimum instﬁﬁ (Fig. 1) being located at a value

We are able to calculate the proportionality constantith  Of agg=4 nn7, and which is given by roughly the position of
Vimon=1.325x10"2cm? [14] and typically a=1 nm (see  Tainzburgr AS We had seen, foe<Gi, a completely different
Fig. 1) beinga=0.13. A fit of Eq.(2.5) to the data foe>Gi  Physics, where the polymer topology is unimportant, comes
yields the curve which goes through the data points in thatto play. Hence, fofl’s even lower, the pure Ising case is a
indicated temperature range as is depicted in Fig. 1. Theerfect representation of our datsee[23]). Rewriting Eq.
fitted parameters ar@=0.20+0.02 and the unperturbed seg- (2.18 into the following form gives
ment lengthag(R o= §Nap) beinga,=1.53+0.08 nm. This
value is higher than the one reported for PDMS by Aharoni
[26] (ag=1.08 nm), values for PEMS are not known. How-
ever, preliminary measurements by Momp2e] indicated
that values fomy beyonday=1.2 nm are possible. By fitting If we usea§ﬁ=4 nn?, Tye=302.2 K, Tc=301.9 K, andv(3
Eq. (2.5 to the data, also the mean field critical temperature—7)=1.814, we are able to obtain@ene parametgfit to the
enters, with amounts to b&,,-=302.2 K. This value was data which is indicated in Fig. 2. Thereby the value of the
obtained by plotting the reciprocal structure factor versus theonstaniC was found to beC=0.05. Thus we conclude that
inverse temperature and extrapolate itS@®) =0 to find  from our study the following physical sensible picture
Tue- This procedure is meaningful only for high molecular emerges: The crossover from MF to Ising is given by the
weight blends like those here, as was outlined recdtly. ~ Ginzburg temperture. This temperature differs from the clas-
In a recent paper, Vilgis and Meid8] put forward a sical MF estimate for the width of the critical region as out-
variational treatment to predict a weak localization of chainslined by Joanny 28], as has been shown by Ref49], [21]
at temperatures when the correlation length is of the order dfased on Refl20]. Our study adds another temperature that
the chain dimensions. This is supported by the droplet picis important on the level of tagged chains. THigeg—g iS
ture [7], which is well established in the physics of critical given by the value when the correlation lengifil) com-
phenomena, where the localization is most pronounced whepares with the values of the size of the polymer chains, and
the size of the chains is of the order of a critical droplet. Thecorresponds to the zero of the effective interaction potential
corresponding value of¢ for that situation is given bj27]  [Eq. (2.2)]. It is natural that the latter temperature is very

2T
| +C| =M

2 _ .2
Aeff= Amin

—1)(T—TC)V(3”)}. (5.6)
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configurational properties of isolated chains, and coupling to
1.2t critical density fluctuations are not taken into account. Con-
sequently, RIS effects can be neglected.
1.0f
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302 304 306 308 310 APPENDIX: SINGLE CHAIN CONFORMATION
Temperature [ K] AND NEUTRON SCATTERING
FIG. 2. The same data as in Fig. 1. The full line is a fit of Eq. T,he determination of t_he effective taQ_QEd chain C.onfor-
(5.6) to the data. In the picture of the effective renormalized corre-mation of a chain of species can be obtalne(_j altemat'yely
lation function, the chain dimensions remain finite Tat. Evi- by small-angle neutron scattering. To do this, a fraction of

dently, this result describes the data arousdGi with deviations A chains is labeled. The static scattering intensity is then

for e>Gi. given by
— _ _ 2
close to the Ginzburg temperature. The last point is consis- 1(a)=F(1=f)(ap—an)"Sa(q)
tent with our recent “localization model{8]. +(fap+(1—f)ay—b)2Spa(Q)
In the past, peculiar scattering results from polymer _
blends [29] have been interpreted as being due to a + (incoherent pajyt (A1)

k-dependeny parameter. In the framework of Khokhlov and
Erukhimovich’s treatmenf30] this is likely related to glass . i !
point effects when local structural phenomena such as diffelhydr(.)gen’ res_pecnvel_)b in the _scattermg length of the
ence in stiffness, dynamics of side groups, etc., matter. ThgpeplesSA(q) Is the smgle chain structgre factor of tie
polymer blend under the present consideration may be Choc_hams, andSpA(q) the divergent collective structure factor
sen as a model system where these effects are absent. Tﬂ{sthe blend. Thus

has been proven also in a recent study on the interdiffusion

dynamics[31]. Sa@)= a2, (explig: (=1},

Finally, we would comment on recent neutron results by b
Briber, Bauer, and Hammouda2] on d-PS—PVME blends.
They report also chain shrinkage to a much lesser extent for Saa(@) =2, (explig- (rf—rf)l).
mixtures which are off-critical in the concentrations and, ap
even more important, not close 1q.. Their data were ana- o ] ) ]
lyzed with the RPA, although the blend is very asymmetric!he difficulty now is that the divergent paBsa(q) domi-
and the application of the RPA is questionaf®8]. How- natesl (g) close to the phase transition, and it is difficult to
ever, the results reported there cannot be compared with o@*tractSa(a). _ _ _ _
data nor with our theoretical predictions, since they are taken The only way to obtainSy(q) in a reliable way is to
in the wrong €,N) phase space. For a further quantitative choose
justification of this, see the Appendix. One may further argue fap+(1—f)ay—b=0.
that the pure thermal expansion may also be an effect which
one has to take into account here. That is erroneous as thgis condition is, in general, difficult to satisfy, and there are
rotational isomeric statéRIS) model reflects only purely direct measurements & (q).

whereap anday are the scattering lengths of deuterium and
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